

Topics:

Products Used

Terminal Blending

Mix Design

Plant Production

QC Lab & Field

Performance Testing

Summary

SUPERIOR BOWEN

SB

Products Rubber #30 Mesh Rubber #50 Mesh – Lehigh MicroDyne MD-400 TR Vestenamer Rheopave – 80-Rheopave XP10 PG64-22

Products

SB

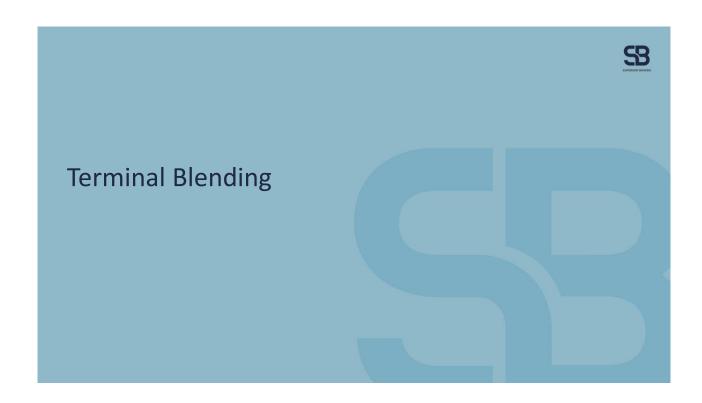
Rheopave™

Lehigh Technologies has partnered with Rheopave Technologies, LLC, to provide the asphalt industry with a cost-conscious additive that boosts the performance of ground tire rubber and MRP in rubber-modified asphalt (RMA) binders. Rheopave™ is a patented blend of polymers and other components developed specifically to network with rubber powders to increase rutting/channeling resistance (an increase in multiple stress creep recovery, or MSCR value), improve storage stability and impart greater mix workability and compaction. RMA systems are longer lasting, less costly, and friendlier to the environment than conventional asphalt systems.

SUPERIOR BOWEN

Products

MicroDvne™


Versatile and Valuable

Lehigh offers MicroDyne™ MRPs in a range of particle sizes—from 830 microns (20 mesh) to 50 microns (300 mesh)—to fit a wide array of applications. Lehigh's customers have deployed MicroDyne™ MRPs in plastics, asphalt, construction, coatings and other applications. MicroDyne™ can be made from tire rubber material, natural rubber, nitrile rubber, butyl rubber or EPDM rubber.

MicroDyne™ MRPs provide a range of benefits:

- •Improved performance attributes, such as water resistance, energy savings, durability, flexibility, sound dampening, heat absorption and vibration dampening.
- •Significant cost savings over virgin raw materials.
- •A sustainable raw material that helps customers achieve corporate goals.

\$B

SUPERIOR BOWEN

Keys to Successful Blending

Addition Rates:

64V	64H
8-12% Rubber	6-9% Rubber
0.5% Rheopave	0.5% Rheopave

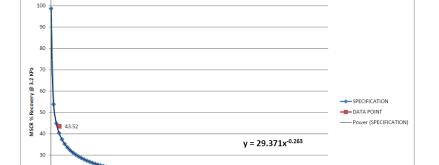
SUPERIOR BOWEN

SB SUPERIOR SOWER

Construction Materials Testing Group Performance Graded Asphalt Binder Certificate of Analysis ID#: 062217F1

6/22/2017 Date Completed: 06/23/17

Analyst:	AAH	Tank Number:	3	State: MO
Test Description:	Temp:	Method:	Specification:	Inspection:
<u> </u>	(Original Binder		
Specific Gravity @	25°C	AASHTO T228	1 kg/m³	1.0350
Flash Point. COC	, ℃	AASHTO T48	230 minimum	310
Rotational Viscosity	@ 135 °C	AASHTO T316	3.000 Pa's maximum	1.510
Dynamic Shear Rheometer	@ 64°C	AASHTO T315	1.00 kPa minimum	4.849
Re	olling Thin Film Ov	en (RTFO) Residue, A	ASHTO T240	
Mass Change	@ 163°C	AASHTO T240	1.0% maximum	-0.17%
Dynamic Shear Rheometer	@ 64°C	AASHTO T315	2.20 kPa minimum	12.107
MSCR	@ 64°C	AASHTO T350	% Rec @ 3.2 KPA	43.52
MSCR	@ 64°C	AASHTO T350	Jnr @ 3.2 KPA	0.305
	Pressure Aging Ves	ssel (PAV) Residue, AA	SHTO R28	
Dynamic Shear Rheometer	@ 25°C	AASHTO T315	5000 kPa maximum	2,115
Creep Stiffness	@ -12°C	AASHTO T313	300 MPa maximum	83
Slope, m-value	@ -12°C	AASHTO T313	0.300 minimum	0.307
Direct Tension		AASHTO T314	1.0% minimum	-


This document certifies that this material complies with AASHTO M226 and AASHTO M332 specifications for Performance Graded asphalt binder. allen Hottomany

Allen Holloway

Date Sampled:

Certified by Construction Materials Testing Group Authorized Representative

SUPERIOR BOWEN

SUPERIOR BOWEN

20 10

Gradation Adjustments Drain Down Concerns Mineral Filler / Fly Ash Cellulous Fibers

\$3

Aggregate	Bin %
PG64-22 w/ 10% GTR & 0.5% Rheo	6.3%
½" Limestone	38.5%
3/8" Limestone	33.0%
3/8" Chat	15.0%
Drag Sand	9.0%
Mineral Filler	4.5%
Cellulose Fibers	0.3%

SUPERIOR BOWEN

Aggregate Requirements

403.2.5 Stone Matrix Asphalt. In addition to other requirements, material for SMA mixtures shall meet the following. Coarse aggregate shall consist of crushed limestone and either porphyry or steel slag in accordance with the quality requirements of Sec 1002, except as follows. The Los Angeles (LA) abrasion, when tested in accordance with AASHTO T 96, shall not exceed 40 percent based on initial ledge approval and source approval. The percent absorption, when tested in accordance with AASHTO T 85, shall not exceed 3.5 percent based on the individual fractions. The amount of flat and elongated particles, measured on material retained on a No. 4 sieve, of the blended aggregate shall not exceed 20 percent based on a 3:1 ratio or 5 percent based on a 5:1 ratio.

Drain down

403.4.9 Draindown. AASHTO T 305, Draindown Test, shall be performed on all SMA mixtures prior to job mix approval. The mixture shall be stabilized in such a way that the draindown of the asphalt binder shall not exceed 0.3 percent by weight of mixture.

SUPERIOR BOWEN

Vca

403.4.10 Voids in Coarse Aggregate. The percent VCAMIX of SMA mixtures shall be less than or equal to the VCADRC as determined using AASHTO T 19. This may be calculated using the following equations:

$$\begin{split} & \text{VCA}_{\text{DRC}} = 100 \text{ x } \left(G_{\text{CA}} \gamma_{\text{w}} - \gamma_{\text{s}} \right) / G_{\text{CA}} \gamma_{\text{w}} \\ & \text{VCA}_{\text{MIX}} = 100 \text{ - } \left(P_{\text{bp}} \text{ x } G_{\text{mb}} / G_{\text{CA}} \right) \\ & P_{\text{bp}} = P_{\text{s}} \text{ x } PA_{\text{bp}} \end{split}$$

Where:

 $\begin{array}{lll} G_{CA} & = & & bulk \ specific \ gravity \ of \ the \ combined \ coarse \ aggregate \ (AASHTO \ T \ 85), \\ \gamma_s & = & unit \ weight \ of \ coarse \ aggregate \ in \ the \ dry-rodded \ condition \ (DRC) \ (lb/ft3) \end{array}$ (AASHTO T 19), $v_{\rm w} = v_{\rm p} = v_{\rm$

percent aggregate by total mixture weight retained on No. 4 sieve and PA_{bp} = percent aggregate by total aggregate weight retained on No. 4 sieve*.

*Use No. 8 sieve for SP095xSM

SB SUPERIOR BOWEN

Oil Calibration
Oil Circulation
Age of Oil
Mixing Temp

Issues...

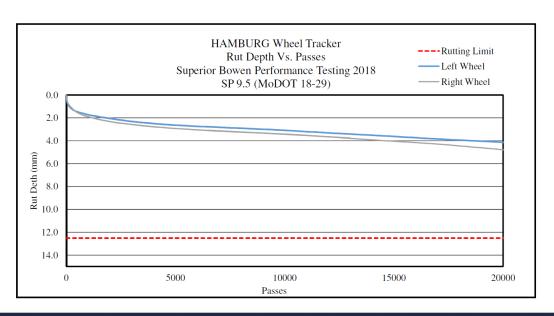
Particle Swell
Gradation
Ignition Samples
Compaction
PG Grading / Extraction

SUPERIOR BOWEN

403.5.2 Density. The final, in-place density of the mixture shall be 94.5 ± 2.5 percent of the theoretical maximum specific gravity for all mixtures except SMA. SMA mixtures shall have a minimum density of 94.0 percent of the theoretical maximum specific gravity. The theoretical maximum specific gravity shall be determined from a sample representing the material being tested. Tests shall be taken not later than the day following placement of the mixture. The engineer will randomly determine test locations.

SB SUPERIOR BOWEN

Hamburg I-Fit DCT

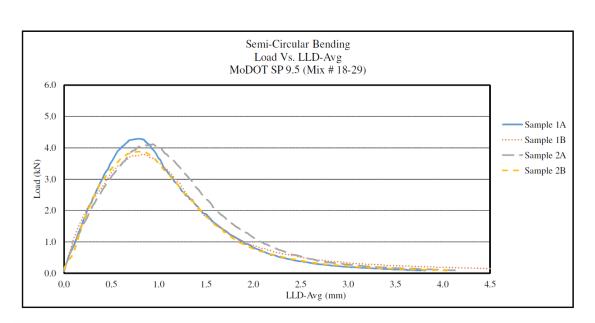

\$3

Hamburg

Date Sampled	07/30/18				
User Name		C. Haahr			
Organization		CMTG			
Project / Mix	Superior Bowen Performance Testing 2018 / SP9.5 MODOT18-29				
Specimen ID:	L-1	L-2	R-1	R-2	
Thickness (mm)	65.0	65.0	65.0	65.0	
% Air Voids	5.9	6.0	5.8	5.8	
RESULTS	Left Wheel		Right Wheel		
Rut Depth Limit (mm)	12.5		12.5		
Target Passes to Failure	20,000		20,000		
Final Rut Depth (mm)	4.14		4.79		
Total Passes	20,000		20,000		
Passes at Failure	20,000		20,000		
Stripping Inflection Point (SIP)	None		None		
Rut Depth at SIP (mm)	N/A		N/A		
Rutting Acceptance (Pass/Fail)	PASS		PASS		

SUPERIOR BOWEN

SB

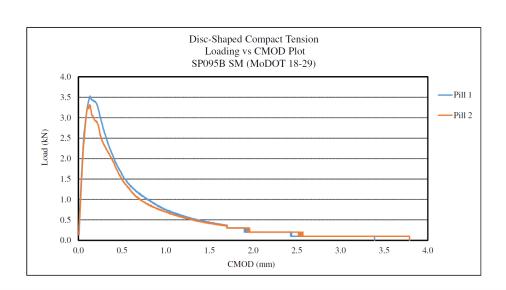

SCB

Date Sampled		7/30/2018			
User Name		C. Haahr			
Organization		CM	ITG		
Mix / Project	SP	9.5 (MoDOT 18-29) / Superior	Bowen Performance Testing 20	018	
Specimen ID	Pill 1A	Pill 1B	Pill 2A	Pill 2B	1
Test Temperature	25 C	25 C	25 C	25 C	
Specific Gravity	2.264	2.264	2.261	2.261	
Air Void Content	5.8	5.8	6	6	
Thickness (mm)	50.5	50	49.5	50.2	
Ligament (mm)	58.4	59.3	58.7	58.8	
Notch Depth (mm)	15.2	15.2	15.1	14.9	
Peak Load (kN)	4.293	3.796	4.117	3.879	
Time to Peak Load	0.992	1.066	1.165	0.967	
Disp at Peak Load	0.796	0.863	0.943	0.778	
Test Duration (seconds)	4.588	6.6216	5.0344	4.8608	Average
Fracture Energy (J/m²)	1870.9	1939.1	2074.8	1802.0	1921.7
Strength (kPa)	577.5	509.5	563.5	524.2	543.7
Slope at Inflection Point	-4.26 k	-3.54 k	-3.59 k	-3.46 k	-3.71 k
Flexibility	4.4	5.5	5.8	5.2	5.2
Secant Stiffness (kN/mm)	5.4	4.4	4.4	5.0	4.8
Critical Displacement (mm)	1.9	2.0	2.2	2.0	2.0

SUPERIOR BOWEN

SB

DCT



Date Sampled	7/30/2018				
Operator Name	C. Haahr				
Organization		CMTG			
Mix / Project	SP095B SM (MoDOT 18-29) / Superior Bowen Performance Testing 2018				
Specimen ID	Pill 1 Pill 2 Pill 3				
Test Temperature	-12 C	-12 C			
Diameter	150.00 mm	150.00 mm			
Thickness	50.58	50.51			
Ligament	82.12	82.43			
Cumulative Area	2479.37 N-mm	2370.84 N-mm			
Actual Test Rate	0.0170 mm/second				
Disp at Max Load	0.1281 mm	0.1225 mm			
Time at Max Load	7.80 seconds	7.44 seconds			
Ave Chamber Temp	-12.0 C	-12.0 C			
Test Duration	199.88 seconds	223.20 seconds			
Significant Performance Values					
Max Load	3.531 kN	3.317 kN			
Fracture Energy (J/m²)	597 J/m²	569 J/m²			

SUPERIOR BOWEN

\$3

- SMA good field performance with GTR
- GTR production is fairly easy
- Requirements for blending/certifying are low if you have the PG equipment
- Storage capacity can be a challenge
- Time needed for material to react
- Additional stirring capacity

Potential Upgrades:

- Shear pump for the AC
- Quick heater for AC

SUPERIOR BOWEN

Contact Info

- Jennifer Breuer
- Superior Bowen Asphalt
- jbreuer@superiorbowen.com
- 816-921-8200 Office
- 816-769-5335 Cell